The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model
نویسندگان
چکیده
Traditional models of soil organic matter (SOM) decomposition are all based on first order kinetics in which the decomposition rate of a particular C pool is proportional to the size of the pool and a simple decomposition constant ðdC=dt 1⁄4 kCÞ: In fact, SOM decomposition is catalyzed by extracellular enzymes that are produced by microorganisms. We built a simple theoretical model to explore the behavior of the decomposition–microbial growth system when the fundamental kinetic assumption is changed from first order kinetics to exoenzymes catalyzed decomposition ðdC=dt 1⁄4 KC £ EnzymesÞ: An analysis of the enzyme kinetics showed that there must be some mechanism to produce a non-linear response of decomposition rates to enzyme concentration—the most likely is competition for enzyme binding on solid substrates as predicted by Langmuir adsorption isotherm theory. This non-linearity also induces C limitation, regardless of the potential supply of C. The linked C and N version of the model showed that actual polymer breakdown and microbial use of the released monomers can be disconnected, and that it requires relatively little N to maintain the maximal rate of decomposition, regardless of the microbial biomass’ ability to use the breakdown products. In this model, adding a pulse of C to an N limited system increases respiration, while adding N actually decreases respiration (as C is redirected from waste respiration to microbial growth). For many years, researchers have argued that the lack of a respiratory response by soil microbes to added N indicates that they are not N limited. This model suggests that conclusion may be wrong. While total C flow may be limited by the functioning of the exoenzyme system, actual microbial growth may be N limited. q 2003 Elsevier Science Ltd. All rights reserved.
منابع مشابه
Soil Microbial Biomass Carbon and Nitrogen in Himalayan Rangeland of Eastern Nepal: A Comparison between Grazed and Non-grazed Rangelands
Soil microbial biomass plays an important role in nutrient transformation in terrestrial ecosystems. Microbial biomass is also an early indicator of changes in total soil organic carbon. Thus, the main objective of this study was to identify and quantify the present status of soil microbial biomass carbon and nitrogen with various management practices in Himalayan rangeland. To meet the aforeme...
متن کاملMechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils
Empirical studies show that nitrogen (N) addition often reduces microbial decomposition of soil organic matter (SOM) and carbon dioxide (CO2) production via microbial respiration. Although predictions from theoretical models support these findings, the mechanisms that drive this response remain unclear. To address this uncertainty, we sampled soils of three grassland sites in the U.S. Central G...
متن کاملStoichiometry constrains microbial response to root exudation- insights from a model and a field experiment in a temperate forest
Plant roots release a wide range of chemicals into soils. This process, termed root exudation, is thought to increase the activity of microbes and the exoenzymes they synthesize, leading to accelerated rates of carbon (C) mineralization and nutrient cycling in rhizosphere soils relative to bulk soils. The nitrogen (N) content of microbial biomass and exoenzymes may introduce a stoichiometric co...
متن کاملاثر شوری بر برخی شاخصهای میکروبی خاک در حضور و عدم حضور ریشههای زنده گیاه
Similar to plants, soil salinity may reduce microbial growth and activities in different ways. The aim of this study was to determine the effects of different levels of salinity on some microbial indices in the presence and absence of plant's living roots. In this study, five levels of salinity using NaCl, CaCl2, MgCl2 and KCl and three soil media (soil with no plant, soil cultivated with wheat...
متن کاملThe Effect of Different Land Uses on New Indices of Soil Quality in Central Alborz Region
Different land uses have various effects on the changes of soil properties. The purpose of this study was to evaluate the effects of natural forest, needle-leaved plantation and rangelands of central Alborz on new indices of soil quality (i.e. organic matter stratification, carbon management index and soil biological activities). For this purpose, eight samples from organic layer (litter) and m...
متن کامل